Quick and Easy Method for Removal of DMSO from Thawed Cell Products

Dalip Sethi1*, Jon Ellis2, Zelenia Contreras2, John Perea2, Stephen Truong2, and Jillian Miller1

1Cesca Therapeutics, Inc., Rancho Cordova, CA; 2ThermoGenesis Corp., Rancho Cordova, CA

Introduction

Cell products, such as Hematopoietic Stem Cells (HSCs), have been cryopreserved and stored for decades using the cryoprotectant dimethyl sulfoxide (DMSO) at temperatures below -135°C. Although the cell products have demonstrated excellent post thaw viability, DMSO is considered a potential cause of infusion related adverse events.1,2 Therefore, removal of DMSO and cell lysis products by washing the cell product after thawing may reduce the severity of some transplant related complications.3,4 We have developed a quick and easy method to wash thawed apheresis products using ThermoGenesis’ X-WASH™ System. Utilizing this protocol, nucleated cell recoveries were greater than 85% with no significant loss of cell viability. The entire process took less than one (1) hour.

Materials

Healthy adult cryopreserved Leukopak (Quarter collection) were purchased from HemaCare Corp., CA, USA. Samples (n=3) were thawed as per supplier instructions. Briefly, the cryo-bag was removed from liquid nitrogen storage and immediately placed into a 37°C water bath without figure 8 motion or flicking. Thaw-wash media (2.5% HSA, 5% Dextran, and 20 µg/mL DNase I in saline) was added to the thawed products and the sample was transferred into a transfer bag (optional step). The sample was transferred to the X-WASH Disposable Cartridge. Post-Centrifugation, waste media was removed using positive pressure and new media was added using controlled negative pressure. The final centrifugation cycle harvested the cell pellet into the harvest chamber that was pre-filled with media.

Methods

Healthy adult cryopreserved Leukopak (Quarter collection) were purchased from HemaCare Corp., CA, USA. Samples (n=3) were thawed as per supplier instructions. Briefly, the cryo-bag was removed from liquid nitrogen storage and immediately placed into a 37°C water bath without figure 8 motion or flicking. Thaw-wash media (2.5% HSA, 5% Dextran, and 20 µg/mL DNase I in saline) was added to the thawed products and the sample was transferred into a transfer bag (optional step). The sample was transferred to the X-WASH Disposable Cartridge. Post-Centrifugation, waste media was removed using positive pressure and new media was added using controlled negative pressure. The final centrifugation cycle harvested the cell pellet into the harvest chamber that was pre-filled with media.

Results

The reduction in DMSO in the washed product was calculated based on volume reduction. With the assumption of 10% DMSO in the starting material and even distribution of DMSO in cells and buffer. Actual DMSO quantification will be conducted in future experiments.

Conclusions

In conclusion, we have developed a fast and efficient method to remove DMSO from thawed cellular products. The method resulted in cell recoveries of greater than 90% with no significant loss of viability. The method is easy to implement in a standard laboratory.

References

2Grigg et al. (2000) Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant 25(12): 1285–1287.

*Corresponding author: dsethi@cescatherapeutics.com